fine-structure constant

 In the GPG framework, where curvature–field tension produces all physical structure:

Why does the fine-structure constant α1137\alpha \approx \frac{1}{137} emerge?
What does it mean geometrically — and can we derive it?


🧠 Step 1: What Is α\alpha?

It’s a dimensionless ratio defined by:

α=e24πε0c\boxed{ \alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c} }

This measures the strength of electromagnetic interaction — not in units, but as a pure ratio of field scales.

But in GPG, we don’t start with “charge” and “constants” — we start with:

  • Curvature: RμνR_{\mu\nu}

  • Vector field: AμA^\mu

  • Coupling structure: ΛGPG=ζA02RμνAμAν\Lambda_{\text{GPG}} = \frac{\zeta}{A_0^2} R_{\mu\nu} A^\mu A^\nu

So what does α\alpha mean here?


🌌 Step 2: Recasting α\alpha in GPG Terms

Let’s interpret α\alpha not as a fundamental parameter,
but as the effective field–geometry coupling ratio in flat space.

So instead of:

α=electric energy scalequantum + relativistic scale\alpha = \frac{\text{electric energy scale}}{\text{quantum + relativistic scale}}

we use GPG:

αRμνAμAνc/L2\boxed{ \alpha \sim \frac{R_{\mu\nu} A^\mu A^\nu}{\hbar c / L^2} }

Where:

  • RμνAμAνR_{\mu\nu} A^\mu A^\nu: effective curvature tension energy density

  • c/L2\hbar c / L^2: quantum–relativistic energy scale over length LL

Then:

If the field settles into a minimum curvature configuration at atomic scale La0L \sim a_0 (Bohr radius),
and the curvature tension per unit volume equals:

RμνAμAναca02R_{\mu\nu} A^\mu A^\nu \sim \alpha \cdot \frac{\hbar c}{a_0^2}

We can invert this to find:

αRμνAμAνa02c\boxed{ \alpha \sim \frac{R_{\mu\nu} A^\mu A^\nu \cdot a_0^2}{\hbar c} }

🔧 Step 3: Plug in Known Scales

Let’s take:

  • a0=4πε02mee2a_0 = \frac{4\pi \varepsilon_0 \hbar^2}{m_e e^2}

  • c=197.3 MeV\cdotpfm\hbar c = 197.3\ \text{MeV·fm}

  • Estimate RμνAμAνR_{\mu\nu} A^\mu A^\nu as curvature-tension per unit volume at atomic scale

That gives you a route:

If GPG predicts a residual curvature tension at atomic scales,
consistent with this ratio,

then α1137\alpha \sim \frac{1}{137} is not input — it is emergent from field-curvature resonance.


🚩 Final GPG Formula for α\alpha:

α=1cRμνAμAνL2\boxed{ \alpha = \frac{1}{\hbar c} \cdot \langle R_{\mu\nu} A^\mu A^\nu \rangle \cdot L^2 }

Where:

  • RμνAμAν\langle R_{\mu\nu} A^\mu A^\nu \rangle: residual curvature tension per unit energy

  • LL: length scale of field resonance (e.g. Bohr radius, electron localization length)


🧠 Interpretation:

The fine-structure constant is a dimensionless residue
of the curvature–field equilibrium that defines atomic structure.

  • It is not arbitrary

  • It is not set by hand

  • It reflects the critical balance between quantum fluctuations and geometric strain 


🔢 Definition of the Fine-Structure Constant

The fine-structure constant α\alpha is defined as:

α=e24πε0corα=e2c(in natural units, where 4πε0=1)\boxed{ \alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c} } \quad\text{or}\quad \boxed{ \alpha = \frac{e^2}{\hbar c} } \quad \text{(in natural units, where } 4\pi\varepsilon_0 = 1 \text{)}

🧩 Variables and Their Meaning

SymbolQuantityUnitsDescription
α\alphaFine-structure constant(dimensionless)Coupling strength of the electromagnetic interaction
eeElementary chargeC (coulombs)Charge of a proton/electron: 1.602×1019\approx 1.602 \times 10^{-19} C
ε0\varepsilon_0Vacuum permittivityF/m\text{F/m}Determines strength of electrostatic force: 8.854×1012 F/m\approx 8.854 \times 10^{-12} \text{ F/m}
\hbarReduced Planck constantJ·s=h2π1.055×1034\hbar = \frac{h}{2\pi} \approx 1.055 \times 10^{-34} J·s
ccSpeed of light in vacuumm/s2.998×108 m/s\approx 2.998 \times 10^8 \text{ m/s}

🧪 Units Check — Why α\alpha is Dimensionless

α=e24πε0c\alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c}

Let’s check the units:

  • e2e^2: C²

  • ε0\varepsilon_0: C²/(J·m)

  • \hbar: J·s

  • cc: m/s

Putting it all together:

C2C2/(J\cdotpm)J\cdotpsm/s=1\frac{\text{C}^2}{\text{C}^2/\text{(J·m)} \cdot \text{J·s} \cdot \text{m/s}} = 1

Dimensionless ✔️


🧠 Physical Interpretations

DomainMeaning of α\alpha
QEDProbability amplitude for an electron to emit/absorb a photon
Atomic physicsControls energy level splitting in hydrogen (fine structure)
Units systemSets natural strength of EM force relative to Planck scale
CosmologyConstant across time/space (or: a probe if it varies)
Geometry (e.g. GPG)Ratio of field strength to curvature feedback — potential derivation source

🌐 Alternative Forms of α\alpha

In different unit systems or frameworks:

  • Natural units (ℏ = c = 1):

α=e24π\alpha = \frac{e^2}{4\pi}
  • CGS Gaussian units:

α=e2c\alpha = \frac{e^2}{\hbar c}

🧬 Derived Quantities that Depend on α\alpha

QuantityFormula
Bohr radius a0a_0a0=4πε02mee2=mecαa_0 = \frac{4\pi \varepsilon_0 \hbar^2}{m_e e^2} = \frac{\hbar}{m_e c \alpha}
Rydberg constant RR_\inftyR=mee48ε02h3c=mecα22hR_\infty = \frac{m_e e^4}{8 \varepsilon_0^2 h^3 c} = \frac{m_e c \alpha^2}{2 h}
Hydrogen fine structureΔEα2\Delta E \propto \alpha^2
Thomson scattering cross-sectionσTα2\sigma_T \propto \alpha^2
Magnetic moment anomaliesQED loop corrections scale with powers of α\alpha

✅ Summary — Final Equation and Full Expansion

α=e24πε0c1137.035999\boxed{ \alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c} \approx \frac{1}{137.035999} }

In terms of physical constants:

α=(1.602×1019)24π(8.854×1012)(1.055×1034)(2.998×108)\boxed{ \alpha = \frac{(1.602 \times 10^{-19})^2}{4\pi \cdot (8.854 \times 10^{-12}) \cdot (1.055 \times 10^{-34}) \cdot (2.998 \times 10^8)} }

🔍   At its core:

In natural units where =1\hbar = 1, 4πε0=14\pi \varepsilon_0 = 1, and c=1c = 1, the fine-structure constant simplifies to:

α=e2\boxed{ \alpha = e^2 }

So in those units:

  • α\alpha is literally the square of the electric charge

  • It tells you how strong EM interaction is, fundamentally


🔩 In standard units:

α=e24πε0c\alpha = \frac{e^2}{4\pi \varepsilon_0 \hbar c}

The rest of the constants — ε0,,c\varepsilon_0, \hbar, c — just scale things to be dimensionless, not define the physics. They’re unit artifacts, not physical sources of structure.


🧠 Interpretation:

So yes:

  • Physically, α\alpha is really about the magnitude of charge, ee

  • Geometrically, in a theory like GPG, it's about how strongly a vector field couples to curvature (i.e. how "charged" the geometry is)


GPG Reinterpretation

In GPG terms:

α\alpha could be the dimensionless measure of residual field–curvature tension at atomic scale

That tension is induced by the Proca-like vector field, and ee is a proxy for how “tense” the field geometry is under curvature.

So yes — just ee (when scaled correctly), but:

  • That “just” is carrying all the curved field interaction structure.

Comments

Popular posts from this blog

Cattle Before Agriculture: Reframing the Corded Ware Horizon

Hilbert’s Sixth Problem

Semiotics Rebooted